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A numerical method is developped for the integration of stiff inhomogeneous coupled 
ordinary differential equations. It is shown how to compute integrals with integrands 
containing the solution of the differential equations. The method is stable and avoids storing 
of large amounts of intermediate results. The present method can also be applied to problems 
involving solutions of homogeneous coupled equations. 

1. INTRODUCTION 

In recent years many new numerical methods have been developed to deal with sets 
. 

of coupled ordinary, linear and homogeneous differential equations describing various 
physical problems. In particular the problem of bound states described by a set of 
differential equations was investigated in several [l-5] papers and methods that are 
used can be roughly divided into two groups: methods related to the invariant 
imbedding technique and leading to systems of nonlinear equations [4-61 and 
methods [ l-31 related to the Gram-Schmidt orthogonalization procedure [ 71. 

Depending on the detailed nature of the studied problem one can argue in favor of 
either the invariant imbedding or the Gram-Schmidt orthogonalization method but in 
principle either method may be used to solve homogeneous sets of differential 
equations. However, these methods can not be directly applied to inhomogeneous 
linear boundary value problems as are encountered when a perturbation is applied to 
a coupled-channel problem and the perturbation theory is used to deal with the 
perturbation. In particular an inhomogeneous problem arises in one of the approaches 
to the nonadiabatic theory of diatomic molecules [8]. 

The origin of difficulties in the numerical integration of an inhomogeneous set is 
the same as in the case of homogeneous equations: some of the solutions of the 
corresponding homogeneous equations grow very fast and in consequence they 
swamp completely the desired solution of the inhomogeneous set. 

To overcome, at least partly, this difficulty is the aim of the present work. It has 
been started in connection with the nonadiabatic theory of diatomic molecules [8] 
and therefore reference is made to diatomic molecules in Section 2 when we give a 
sketch of the derivation of the general form of the inhomogeneous equations. The 
method of integration of this set is presented in Section 3. 
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2. SPECIFICATION OF THE CONSIDERED EQUATIQN~ 

Although the present investigation was started in connection with the ~onadiabat~c 
corrections to the energy of diatomic molecules, the numerical difficulties that we 
would like to discuss are not restricted to this particular problem. However, it is prac- 
tically impossible to design an efficient numerical method without making some 
assumptions about the orders of magnitude of the coefficients in the equations. 
Therefore we give below the relevant equations for a molecule to specify the orders of 
magnitude that we are interested in. 

Let P be the reduced mass of the two nuclei and r the scalar internuclear distance. 
If the remaining coordinates in the center of mass system are denoted by X, the 
nonrelativistic hamiltonian of the molecule can be written as (see, e.g., [9]) 

where the operator H&z; r) commutes with r. The explicit form of H, can be found 
in [9] but we will not need it here. 

Approximate solutions of the Schrddinger equation with N given by (I), 

(H-E)y=O 

are often sought in the form of a finite expansion 

where cpi(x; r) is a given basis set which we will assume to be real and o~ho~Qrrn~~ 
for all r: 

5 pi(x; r) c&(x; r) dx = f&,. 

A substitution of (3) into (2) leads to the coupled equations for the column vector 
x = 011, X23...Y xJT: 

where 1 O = 2pE and B and V are r-dependent N X N matrices with elements 
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and by AT we denote the matrix transposed to A. For bound states x must vanish at 
the origin, Y = 0, and at some large r,,,,, , 

Suppose now that we have a perturbed problem with the hamiltonian I? = H + H’. 
The correction to the wavefunction, I,P’, satisfies the familiar first order equation of 
the perturbation theory 

(H - E)iy’ = -(H’ - E’)y/ (7) 

with E’ being the first-order correction to the energy. If we expand w’ rather than I,U 
in the form of Eq. (3) we get the inhomogeneous coupled set: 

with the boundary conditions at r = 0 and r = rmax: 

x(0) = 0, xhax) = 0. 

The right-hand side in (8) is a column vector with the components 

(9) 

#i(r) = 2~ 5 rq+ [H’ - E’ ] ly dx 

and the second-order energy correction is given by 

EN = I y/H’y dx dr = -(2p)-’ . L”, 

where 

In the molecular bound state problems we have usually (in atomic units) 

r max - 10, p 2 1000, PII - 1, (24-l III, - V(J z 0.1 - 0.5 

with I] . (1 being a matrix norm. 
In principle one could attempt to solve (8) by using, e.g., the imbedding technique 

[6]. However, this would result in first order equations and in consequence one would 
have to use a very small integration step, h, to satisfy the necessary condition 

h * (/A, - VII < 1. (12) 

With ,U exceeding 103, Eq. ( 12) leads to h N 10-3. Thus the integration of the first 
order equations in the interval 0 < r < 10 would require as much as IO4 integration 
steps. Therefore we will not transform (8) to a first order set. Instead we will 
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transform Eq. (8) to remove the first derivatives. Obviously, this can be done 
linear transformation 

x=s..fT (13) 

where the N x N matrix S satisfies the differential equation 

with the initial condition 

2.dS/dr$B.S=Q 

S(r,) = I. (15) 

Pn (15) I denotes the identity transformation and r0 is arbitrary but fixed. 
Since B is skew symmetric, BT = --II, it follows: STS = I. For a hermitian 

hamiltonian, Eq. (I), Eqs. (5) are self adjoined, i.e., 

VT = V + dB/dr. (16) 

Using Eqs. (13)-(16) we get the equations for the vector S: 

dtfldr’+Q-f=g 

with 

g=ST.$ 

and 

(171 

(18) 

Q=+*(V+ v’-jBTB-&}S. 

The second order correction, Eq. (1 l), reads now 

(19) 

d” = 
I 

f ‘g dr, 

and the equivalent of Eq. (12) is 

h* - IIQII < 1 (21) 

which reduces significantly the number of integration steps required by Eq. (12). 
Clearly, to get Q, Eq. (19), we have to solve Eq. (14). However, since jl B\j - i and 

S is orthogonal, numerical integration of Eq. (14) creates no problems and can be 
performed by any standard method. If the dimension is small, Ey. (14) can be 
integrated and S stored. For larger sets it is more convenient to perform the 
integration of Eqs. (14) and (17) simultaneously an with the same step size h. 

Unfortunately, Eq. (17) has all the inherent instabilities that are typical for Eqs. (5) 
and (8). For that reason Eq. (17) cannot be integrated in a straightforward manner. 
We will discuss this point in some detail in the next section. 
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3. THE METHOD OF NUMERICALINTEGRATION 

Let us consider the boundary value problem 

&/dr’+Q+f=. (22) 

f(O) = f(~“l,,) = 0 (23) 

with f and g being N-dimensional column vectors and Q a real, symmetric matrix. By 
Put we will denote a N x N matrix whose columns represent N linearly independent 
solutions of the corresponding homogeneous equations 

&F/dr’+Q.F=O (24) 

satisfying 

F(0) = 0. (25) 

The solutions of Eq. (24) satisfying 

Wnm) = 0 (26) 

will be denoted by r;‘“. 
Similarly, f”“’ and f’” are solutions. of Eq. (22) satisfying f”“‘(O) = 0, and 

fin(rmax) = 0. The solution of (22), (23) is now 

f = j”“’ + I-“$ = f” + Find, (27) 

where c and d are constant vectors that can be in principle easily determined, e.g., by 
using Eq. (27) twice, for two different values of r, and solving the resulting linear 
equations. However, it is a well-known fact that for stiff equations the solutions 
forming F becomes practically linearly dependent and f becomes proportional to a 
fast growing solution of the homogeneous equations, when one proceeds with the 
integration of Eqs. (24) and (22), respectively. In such a case Eq. (27) does not hold 
and it is difficult to determine f. Fortunately, the difficulties arising from the linear 
dependencies in F can be overcome by using some sort of an orthogonalization 
process whenever F threatens to become linearly dependent [ 1,7] and thus assuring 
the linear independence of the solutions,. This, however, does not suffice if one lost the 
small inhomogeneous solution in f”“’ and f’” because it was swamped by large 
homogeneous solutions. Therefore one should try to subtract from J in the course of 
integration, linear combinations of the homogeneous solutions in order to keep ]( f I( 
possibly small. Below we apply this idea to get an algorithm for the solution of 
Eqs. (22)-(23). 

To begin, let us convert Eqs. (22) and (24) into a discrete problem by using the 
Numerov method (see [3, IO]). For a given number of II + 1 grid points we write 
h = rrnax/~ and r, = k - h (k = 0, l,..., n). 
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Defining 

we get the following recurrence relations for & = f(rj), E; = P(rj): 

Yj+l-UjYj+ Yj-l=Gj+l+ lOGj+Gj-1, (291 
Y,= Y,=O, cw 

zj+l -ujzj+z,i-l=o, (31) 

where 

Yj = (I- T,)A, Wf 

Zj = (I- Tj)Fj, (331 

Uj= (2 . I+ 10 . Tj) . (I- Tj)-l. (34) 

Let Zj be a solution of Eq. (31) satisfying 

z; = 0, Zi=I. 3) 

We define now 

zj” = Zj(<zf)-1, s > 0, j = 0, l,..., W) 

i.e., Zj is a solution of Eq. (31) with the boundary conditions 

zs,=o, z;=r. 

If Yj is any solution of Eq. (29) satisfying Y, = 0, and e a constant vector, 

Fj(C) = Yj - z; c 

is also a solution and satisfies F0 = 0. We will use the notation 

q = F,(c,), 

where c, is a vector that minimizes 

Note that in view of Z, = 0, Eq. (40) leads to Y: = 0. 
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It follows from the above definitions that the vectors that form Zj” are orthogonal 
forj= s, and so they are certainly linearly independent for indicesj close to s. At the 
same time q is small. 

To avoid the problem of testing Zj for the linear independence of columns, it is 
advantageous to change the independent basis by going over from Zj to Zj+l after 
each integration step. Thus we can proceed as follows: Suppose Eq. (29) and (31) 
have been solved for j ,< k and we have q and Zf . Now, computing Z;+ r from 
Eq. (31), we get forj< k + 1: 

zjk+’ = zj”(z;+l)-‘. (41) 

It follows from Eq. (37) 

z;+l = Z;+l(Z;)-’ = R,, (42) 

where R, is the ratio matrix introduced recently by Johnson [3]. Thus Eq. (41) now 
reads 

it?+’ =Zf. R;l. 
J (43) 

Equation (29) yields q for j = k + 1 and the new vector is 

y$+1= y!-zZk+y 
J J J (44) 

with ck satisfying according to Eq. (40): 

(Rk+R;')Ck= k$+RkY;+l. (45) 

In (45) use has been made of (37) and of the symmetry of R, [3]. 
So far we have constructed the outward solutions related through Eqs. (32), (33) to 

Put and FoUt appearing in Eq. (27). The inward solutions, q and 2; can .be 
constructed in a similar manner if we start from 

Fn=Fn-l=o, P, = 0 and P,-, = I, 

and use (29) and (31) for decreasing indices. Instead of Eqs. (42~(45) we get for the 
inward solutions: 

2;-, = Ly@-‘)-’ dk, (46) 
it-1 = gkff-1 

J j  ky 

f+-‘= e--;-l .dk 

(47) 

(48) 

with dk satisfying: 

(R^k+lt;l)dk= ~+~,~f::_,. (4% 
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Now, having both the outward solution, r, for 0 < j < m t 
solution e + l for m < j < n, we can use Eq. (27) to match them. 

In analogy with Eq. (27) we write 

yj= ypzjm+1c= F-y”-.qd 

and for j = m and j = m + 1 we get, respectively, 

i.e., 

and d is given by 

(R,-l?,:,)d=~+,-Em,;;-R,(c-f$+“). (54) 

If the matrix R, - 8;:, is nonsingular, we get from Eqs. (54), (53), and (50) a 
unique solution Yj. If the matrix is singular, the homogeneous problem co~espo~d~g 
to (29), (30) has [3] a nontrivial solution YOj and in consequence Yj is not unique, 
similarly as is the case with the differential equations (22). 

It is clear from definitions (36) and (42) that 

Zi” = Rjvl Rje2 ..a R, for j > k, 

=RJ’R~:;, . . . R& for j c k 
cw 

and similar relations hold for 2;. Hence it suffices to compute Yf, pf and the ratio 
matrices Rj, 8, to solve our problem. As was shown by Johnson [3], these rn~t~i~~s 
can be obtained conveniently from the equations: 

R,== U,-R,=‘,, R,“=O (56) 

and 

R,=u,-l?,;‘,, ly = 0. (57) 

Although the method that we outlined above can be used for a step-by-ste 
integration without the danger of instabilities connected with the initial rapid growt 
of the solutions, the computation of the wavefunction, for large systems, is still a 
practical problem, similarly as in the case of homogeneous equations. For relatively 
weakly bound states, as, e.g., those considered by Dunker and Gordon [Z], one 
can-by using repeatedly our formulas (43)-(49)-compute the proper initial v 
Y, and YR;,-, and then obtain Yj from Eq. (29) in analogy with [2]. Mowever, for stiff 
problems this method must fail because of inherent instabilities. 
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An other possibility is to compute and store the matrices Rj and xk and construct 
the solution with the aid of Eqs. (46)-(55). This method is stable and was 
successfully used by Johnson [3] for homogeneous equations. However, it has the 
disadvantage that it requires a very large amount of storage to store the n x N* 
numbers forming the ratio matrices. Therefore it can not very well be used even for 
moderately large systems. Fortunately, in most cases in practice we need the 
solutions of Eqs. (22)-(23) only to compute integrals of the form 

1 fT.Pdr=h.J1 (58) 

or 

I fT$dr= he J2, (59) 

where the vector p and the symmetric matrix 2 are given functions of r. An example 
of Eq. (58) is the second order energy, Eq. (20). 

Below we present a stable computational scheme for the evaluation of (58)-(59) 
that does not require storing of the ratio matrices. 

If we use the trapezoidal rule we get in view of the boundary conditions, Eq. (30), 
the expressions 

n-1 

J, = 2 (Yj)‘Pj, 
j=l 

n-1 

J2 = 2 (Yj)TAj Yj, 
.i=l 

where we have used the notation 

Pj = (-r- Tj)-‘iJ;., 

Aj= (I- Tj)-lAj(I- Tj)-I. 

To compute J1 we define the auxiliary quantities 

i&f, = f: (Zjs+l)TPj, 
j=l 

E, = i (q)‘Pj 
j=l 

(60) 

(61) 

(62) 

(63) 

(64) 
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and for the evaluation of J, 

N, = i (q+ ‘yAjZ;+ I9 
j=l 

L, = i (q)‘Ajq, 

j=l 

K, = 2 (Zj+l)*A,f~. 
j=I 

Obviously, E, and L, are scalars, MS and KS vectors and N, a matrix. 
By making use of Eq. (44) we get the following recurrence relations 

M 3+ I = KAWS + ps, I>, 

E s+ I= Es - W-M, + 0% :>‘P,+ 1, 

N s+ I= K:dNs + As, J RF,‘, > 

L s+ I= As - tcS)=Ks - (K,) T~S+ (+-NscS+ (Y;;:)TA,+, c;;, 

K s+~=~,-,‘,tKs--scS+A,+,~~:j. 

Thus, starting with E,=L, = 0, M, = K, =0 and N,=O and using (68)-(72) 
simultaneously with the step-by-step integration described above we get at the 
matching point M,, E,, N,,,, K, and L,. 

If we define 
n- 1 

ATis= 2 (.2-‘)TPj Wf 
j=s 

and similarly I?,, flS, L^, and I?,, we get for the inward integration formulas quite 
analogous to Eqs. (68)-(72) 

K-3 = l?;-ws + P,- I), /,749 

L = 8, - (dS)‘lcfs + (~I;)‘P,- 1) (75) 

fis-1 = ~s-~,(~s + A,- ,)R;!j, (76) 

i s-I =&- (d”)Tif- (I?JTds + (dS)T&d” + (~I:)~A,-, I$:;: (47) 

KS-, = ti^,--‘,(& - fls d” + A,-, RI;), 178) 

where d” is defined by (49). 
Now using (50) we write with c and d given by (53~(54) 

J,= +Y (T-Zr+lC)Tpj+ *giT (F~+“-2~d)TPj 

JS j=m+l 

=E,-c=M,+&+,-dTi6&,+, 
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and 

J2 = L, + cTNmc - cTK, - (K,)Tc + t,, , 

+dTfl*+ld-dTRm+l-(I?,+l)Td. 030) 

This completes the evaluation of the integrals (58), (59). In particular, if we set in 
(58) @9 = d r , 1 we get the energy correction, Eq. (20), d” = h . J,, 

It is worth noting that our method of simultaneous integration of the differential 
equations and evaluation of the necessary integrals can be easily applied to the case 
of homogeneous equations. If one uses Johnson’s method [3] for the homogeneous 
equations, one can easily get integrals involving the wavefunction. The necessary 
formulas are obtained from Eqs. (60 j-(80) if one sets q = q = 0. Clearly, to get 
proper normalization it is necessary to compute also the equivalent of N,, Nk with 
ii = I. 

4. NUMERICAL EXAMPLE AND CONCLUSIONS 

As an illustration of the present method a two-dimensional problem 

L(4.Y = g(r)9 

Aa> = NJ) = 0 

with 

L(r) = -(2p)-‘d/dr* + V-E 

was solved and the integral 

J= by.gdr 
I a 

was computed with the aid of the formulas given in the preceding section. 
In (82) V is a symmetrix 2 X 2 matrix with elements 

V,, = -0.66 - 0.035 X { 1 - exp(--r + 2)}*, 

V22 = -0.72 - 0.095 x { 1 - exp[-0.7(r - 3)]}‘, 

V,, = 0.0005 exp[-5.8(r - 3. 125)2] 

and the right-hand side in (81) was given as 

g(r) = L(r) Y&) 

(81) 

(82) 

(83) 

(84) 

(85) 

(86) 

(87) 
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Yo = 
f 1 

k exp[-5(r - 3)‘]. 

The remaining constants were: ,u = 1000, a = 0 and b = 7. Equation (81) was solved 
and J computed by the present method for several different values of E chosen in 
such a way that the lowest value used was below the lowest eigenvalue of Ly = 0 and 
the highest E used was well above the asymptotic values of V for large r. Thus t 
lowest E corresponds to a situation where the solution of the homogeneous problem 
grows very fast and one could expect numerical instabilities. On the other hand, for 
high E the solutions of Ly = 0 oscillate relatively fast which again could lead to 
numerical problems. 

The results obtained with different integration steps, h, are given in Table I 
together with the exact results. It is seen that even for a relatively large integration 
step h = 0.07 the results are accurate to within lo-’ and they rapidly converge to the 
exact results when h decreases. 

The method was also tested for stability on a real, D’ molecule, problem [ 4.11. 
Several sets of up to 21 coupled second order equation the form (g) were solve 
and second order energies of the form (11) computed. fferent step sizes, 
integration intervals [a, b] were used, and the position the matching point 
outward and inward solutions was varied but no instabilities were encountera 
believed, therefore, that the present method is accurate and also relatively e~~ie~~t 

TABLE I 

Results Obtained for the Integral J 

E 

h -0.6 -0.625 -0.65 

0.07 -0.28330654 -0.21324415 -0.143181?6 
0.04 -0.28330678 -0.21324439 -0.143!8200 
0.02 -0.28330681 -0.21324442 --0.143:8203 
0.01 -0.2833068 1 -0.21324442 -0.14318203 
0.005 -0.28330681 -0.21324442 -0.143 18203 
exact -0.283306807 -0.213244417 -0.143182027 

-0.675 -0.7 -0.125 

0.07 -0.073119372 -0.00305698 18 ~.067QQ54~8 
0.04 -0.073 119609 -0.0030572184 0.067005 172 
0.02 -0.073 119635 -0.0030572447 0.067005 145 
0.01 -0.073119637 -0.0030572464 0.067005 144 
0.005 -0.073 119637 -0.0030572465 0.067005 144 
exact -0.0731196366 -0.00305724646 0.067005 1438 
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and it may be useful for solving various linear inhomogeneous problems. Also, as 
was pointed out in the preceding section, the method can be used to get integrals 
involving solutions of stiff homogeneous equations. 
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